Complexity of the BN and the PBN Models of GRNs and Mappings for Complexity Reduction
نویسنده
چکیده
One can think of a Gene Regulatory Network (GRN) as a network of relations among strands of DNA (genes) and the regulatory activities associated with those genes (Dougherty and Braga-Neto, 2006). This general definition allows for many mathematical (usually dynamical) systems to be called GRNs. The goodness of each such model is evaluated using several important criteria: the level of description of the biochemical reactions involved, complexity of the model, model parameter estimation, and the predictive power of the model. There have been many attempts to model the structure and dynamical behavior of GRNs, ranging from deterministic with discrete time space to fully stochastic with continuous time abStract
منابع مشابه
Boolean Models of Genomic Regulatory Networks: Reduction Mappings, Inference, and External Control
Computational modeling of genomic regulation has become an important focus of systems biology and genomic signal processing for the past several years. It holds the promise to uncover both the structure and dynamical properties of the complex gene, protein or metabolic networks responsible for the cell functioning in various contexts and regimes. This, in turn, will lead to the development of o...
متن کاملA MULTI-OBJECTIVE OPTIMIZATION MODEL FOR PROJECT PORTFOLIO SELECTION CONSIDERING AGGREGATE COMPLEXITY: A CASE STUDY
Existing project selection models do not consider the complexity of projects as a selection criterion, while their complexity may prolong the project duration and even result in its failure. In addition, existing models cannot formulate the aggregate complexity of the selected projects. The aggregated complexity is not always equal to summation of complexity of projects because of possible syne...
متن کاملReduction Mappings between Probabilistic Boolean Networks
Probabilistic Boolean networks (PBNs) comprise a model describing a directed graph with rule-based dependences between its nodes. The rules are selected, based on a given probability distribution which provides a flexibility when dealing with the uncertainty which is typical for genetic regulatory networks. Given the computational complexity of the model, the characterization of mappings reduci...
متن کاملReduction of Computational Complexity in Finite State Automata Explosion of Networked System Diagnosis (RESEARCH NOTE)
This research puts forward rough finite state automata which have been represented by two variants of BDD called ROBDD and ZBDD. The proposed structures have been used in networked system diagnosis and can overcome cominatorial explosion. In implementation the CUDD - Colorado University Decision Diagrams package is used. A mathematical proof for claimed complexity are provided which shows ZBDD ...
متن کاملA Bayesian Networks Approach to Reliability Analysis of a Launch Vehicle Liquid Propellant Engine
This paper presents an extension of Bayesian networks (BN) applied to reliability analysis of an open gas generator cycle Liquid propellant engine (OGLE) of launch vehicles. There are several methods for system reliability analysis such as RBD, FTA, FMEA, Markov Chains, and etc. But for complex systems such as LV, they are not all efficiently applicable due to failure dependencies between compo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015